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On the Distribution of Pseudoprimes 

By Carl Pomerance* 

Abstract. Let V (x) denote the pseudoprime counting function. With 

L(x) = exp{log x log log log x/log log x}, 

we prove VP(x) < x * L(x)-'/2 for large x, an improvement on the 1956 work of Erdos. We 
conjecture that VP(x) = x * L(x)-I+?(l). 

1. Introduction. A composite natural number n for which 2- 1 1 (mod n) is 
called a pseudoprime. The least such n is 341. Let 9 (x) denote the number of 
pseudoprimes not exceeding x. It is known that, for some c > 0 and all large x, 

exp{(log X)5114} < @(x) < x exp{ -c(log x log2 x)112}, 

where logk denotes the k-fold iteration of the natural logarithm. The lower bound 
was accomplished recently in [6], while the upper bound is due to Erdos [3]. 

The main purpose of this paper is to present an improvement of Erdos's upper 
bound for V9 (x). We show that, for all large x, 

( 1 ) @6(x) < x * L(x)-12 
where 

L(x) = exp{log x log3 x/log2 x}. 

We believe that (1) is near to best possible for VP (x). In fact we conjecture that 

(2) 6p (x) = x * L(x)1+o(l) 
We briefly discuss how the method of proof of (1) can be applied to two other 

problems: the distribution of Carmichael numbers and the study of the number of 
solutions m of p(m) = n where p is Euler's function. 

We remark that our main result (1) can easily be generalized to pseudoprimes to 
an arbitrary base b > 2. (A composite natural number n is called a pseudoprime to 
base b if b1- 1-I (mod n).) Thus, if gYb(x) denotes the counting function for the 
base b pseudoprimes, we have 6Pb(x) < x * L(x)- 1/2 for all x > xo(b). 

Throughout the paper the letter p will always denote a prime. If S is a set, then 
? S will denote the cardinality of S. 

2. The Exponent to Which 2 Belongs Modulo n. If n is odd, let 12(n) denote the 
exponent to which 2 belongs modulo n. Thus a composite natural number n is a 
pseudoprime if and only if 12(n) I n - 1. To achieve our main result about pseudo- 
primes, we shall first prove a theorem on the number of solutions m of the equation 

12(m) = n. 
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THEOREM 1. There is an xo such that if n is a natural number and x > xo, then 

{m < x: 12(m) = n} < x exp(-logx.I2 3 ) 

Proof. We may assume x > n for otherwise there are no m < x with 12(m) = n. If 
c > 0, then 

E 1 < XC m- xc < XC m-c =XC II (1 p-c) =xcA, 
m<x 12(m) = n pjm==l21(p)jn 12(p)ln 

12(m)= n 

say. We shall choose c = 1 - (4 + log3 x)/(2 log2 x), where x is large enough so 
that c > 7/8. 

The theorem will follow if we show 

(3) log A = o(log x/log2 x). 

Note that, since c > 7/8, 

logA = a p-C + 0(l) = 2 + 0-C + 
12(p)ln dln 12(p)=d 

The primes p with 12(p) = d all divide 2d _ 1, so there are less than d such primes. 
Say they are ql, q2, . . ., q, where O < t < d. Each qi 1 (mod d), so that 

t t d-1 
p-C = qi-c < (di + 1)-c < d-c i-c < (1 -c)-ld''. 

12(p)=d i=d i=l i=l 

Thus, 

(4) logA < (1 - c) d d1-2c + 0(1) < (1- c) -lI (1 _-p 2c)- + 0(1). 
dln pln 

Now, since 1- 2c < -3/4, 

(5) log H (1 - p2c)-l = , pl-2C + 0(1) < E p1-2c + 0(), 
pln pln p<21ogx 

where x is sufficiently large, so that lip<2 log P > x. Using (5), partial summation, 
and the prime number theorem, it is seen that 

log II (1 _p1 2c) << (log x)22c log2x 
pin (2 - 2c)log2 x ?log3 x 

Thus, if x is sufficiently large, we have 

II (1 _P 1-2c)-l < (log x)1/2 
pln 

so that from (4) we have 

log A 2 log2 X (log x)'1/2 +0(1), 
4 + log3 X 

which proves (3) and the theorem. 

3. Pseudoprimes. 

THEOREM 2. For all sufficiently large x, we have 

@(x) < x. exp log x log3 x 
2l1og2 xJ 
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Proof. Recalling the definition of L(x) as exp(og x log3 x/log2 x), we divide the 
pseudoprimes n < x into four possibly overlapping classes: 

(i) n t x a L(x)- p, 
(ii) there is a primep p n with 12(p) > L(x), p > L(x)3, 
(iii) there is a prime p n with 12(p) > L(x), 
(iv) n > x * L(x)- 1 and every primep I n is at most L(x)3. 
The number of n in class (i) is obviously at most 

(6) x * L(x)fl. 
The number of primes p with 12(p) < L(x) is exactly 

I E: 1I< E m < L(x)2. 
m < L(x) 12(p) = m m <L(x) 

Thus the number of n in class (ii) is at most 

(7) 2, xlp < x * L(x) -3 I, < x * L(x)- 
p > L(x)3 12(P) < L(x) 

12(p) < L(x) 

If n is a pseudoprime and d I n, then 

(8) n _ 0 (mod d), n -1 (mod 12(d)), (d, 12(d)) = 1. 

Thus the number of pseudoprimes n < x with d I n is at most 1 + x/(d12(d)). If 
d = p, a prime, then we throw out the solution n = p of (8), so that in this case 
there are at most x/(p12(p)) pseudoprimes n < x with p I n. Thus the number of n 
in class (iii) is at most 

(9) x x X 1 x1og2X 

2Cp x P12(P) L(x) p x P L(x) 
12(p) > L(x) 

If n is in class (iv), then n must have a divisor d with 

(10) xL(x) 4 <d < x.L(x)l. 

Thus, by the comment following (8), the number of n in class (iv) is at most 

,' (1 + dl())< x * L(x)-l+x'd d 16-4 d12(d) ~~~~d12(d) 

X-L(x)-l+x E - 2 

M<X m 12(d)=m 

where E' denotes the sum over odd d satisfying (10). Using Theorem 1 and partial 
summation, the inner sum is, for large x, at most 

2+ log3 x 
exp\-logx *2 log2 x J 

Thus, for large x, the number of n in class (iv) is at most 

0 1) x exp(-logx 20gx 
Hence, using the estimates (6), (7), (9), (11) for the number of pseudoprimes 

n < x in each of the four classes, we have our theorem. 
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Remark. Concerning our conjecture (2), an improvement would be attainable in 
Theorem 2 if we could improve Theorem 1. In the proof of Theorem 1, if a less 
crude estimate for :12(p)=d diP - C could be obtained, possibly only on average, then 
Theorem 1 could be strengthened. (The methods of Erdos [4] may be helpful for 
this.) We conjecture that uniformly for all n 

*#{m < x: 12(m) = n} S x * L(x) +@(x), 
where 0(x) ->0 as x -> oo. From such a result, the method of proof of Theorem 2 
gives 

( (x) < x . L(x)- +ol 
This would be half of the battle for (2). For the other half, in [7], elaborating on an 
argument given by Erdos [3], a heuristic argument is presented that 

C(x) > x * L(x) 

where C(x) is the number of Carmichael numbers not exceeding x. (We say n is a 
Carmichael number if it is a pseudoprime to every base b with (b, n) = 1.) It is easy 
to show that every Carmichael number is a pseudoprime, so VP(x) > C(x). More- 
over, in the next section we shall show how the heuristic argument in [7], just 
alluded to, can be improved to 

C(x) > x L(x)-1+ o(l). 

This argument then supports the other half of our conjecture (2). 

4. Applications of the Method. The method of proof of Theorem 1 has been used 
profitably by Rankin [8] and de Bruijn [1] in the study of the distribution of 
integers with no large prime factors. The method has recently been used in the 
proofs of Theorems 5.1 and 6.1 of [2]. (These theorems deal with the number of 
factorizations of an integer.) In this section we give two further applications of this 
method. 

The Distribution of Carmichael NVumbers. It is easily seen that a composite natural 
number n is a Carmichael number if and only if X(n) I (n - 1), where X(n) is the 
universal exponent modulo n. It is well known that X(n) is the least common 
multiple of the numbers pa-'(p - 1) for prime powers pa I n, except when 8 1 n, 
and then X(n) is the least common multiple of 2a-2 and X(n/2a) where 2a 11 n. 

In Erdos [3] it is shown that 

(12) C(x) < x * L(x) a 
for some positive constant a, where C(x) is the Carmichael number counting 
function. In [7] (Theorem 6) the estimates in Erdos's argument are sharpened to 
show that in (12) we may choose a as any number less than 1. By the methods of 
this paper we can achieve now the sharper result 

(13) C(x) < x * exp -l x ( x log13 X + ((log4 X ) { o2logog3 +l& 10 o3x + 1093o X,, 

In [7] we hold out the possibility that C(x) - F(x) where 

F(x) = x * exp{ -log x(1 + log3 x)/log2 x}, 
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since F(x) does a good job of approximating C(x) for x < 25 * 109. However, (13) 
now shows that C(x) and F(x) are not asymptotic: in fact we have C(x) = o(F(x)). 

We say a word on how (13) is established. We first need to prove an analogue for 
Theorem 1 where X(n) replaces 12(n). This is in fact easy since the sum XX(p) d p-c 
can now be trivially replaced by the larger quantity d -C. By choosing 

1I log4 x -12(log4 X2 
(14) c = - logX + log4 X + log2x _ og3x,,) 

log2 x 103 0 I 
as in the proof of Theorem 5.1 of [2], we obtain 

E I < X explo x(log3 X + log4x + og4X -1 

(15) X(m)=n 

(( log4 X 
2 

In the proof of Theorem 6 in [7] we now use (15) instead of Lemma 2, choosing 
8 = 1 - c where c is given by (14) above. We thus obtain (13). 

One might well wonder why we obtain such accuracy in the upper bound 
estimate for C(x) when so little is known about lower bounds: we cannot even 
disprove C(x) = 0(1)! However, in [7], as we mentioned above, a heuristic argu- 
ment is presented for a lower bound for C(x). This argument draws an analogy 
between the functions 

I(x,y) = #*{n x: P(n) <y 
*'(x, y) = # {primesp < x: p - 1 square-free, P(p - 1) < y 

where P(n) denotes the greatest prime factor of n. In particular, part of the 
heuristic argument is the conjecture 

I- (x, y) ) +(x, y) 
x 'n(x) 

for y in the vicinity of exp{(log x)112). Using what was known about I(x, y), the 
heuristic argument in [7] gave C(x) > x L(x)-2+"('). However, a recent develop- 
ment is that in [2] (Section 3), a much sharper estimate for I(x, y) is obtained. 
Using this new theorem together with the same heuristic argument in [7], we now 
have 

Cx) > x * exp- logx103X+o04 X + log3X +O l)g, X 

(We change the argument in [7] at only one place: we now let A denote the product 
of the primes up to log x/(log2 x)2.) That is, the heuristic argument of [7] now 
implies the conjecture that equality holds in (13). 

Popular Values of Euler's Function. In [5] we studied the function N(n) = # {m: 
p(m) = n), where p denotes Euler's function. We gave a proof (that depended on 
Lemma 2 of [7]) that N(n) < n * L(n)-'+"('). Moreover, we gave a heuristic argu- 
ment that equality holds for an infinite set of n. We were able only to prove that 
N(n) > n5/9 for infinitely many n. 
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The functions X(m) and (p(m) are so similar that virtually the same proof that 
gives (15) also gives 

log n (log4n -1 ((log,4n 
2 

(16) N(n) < n * exp ogn log3n + log4n + 1g + 0 
log2n l~~og3n log3n/// 

Moreover, the new sharp results in [2] on T(x, y), when combined with the 
heuristic argument in [5], imply the conjecture that equality in (16) holds for 
infinitely many n. 

5. Numerical Evidence. In the Table we have presented values of the functions 
k(x),j(x), k2(x),J2(x) (defined below) for selected values of x. 

As in [7], k(x) is defined by the equation 

C(x) = x - exp{ - k(x)log x log3 x/log2 x}. 

In the Table we have reproduced the data in Table 3 of [7] on k(x). We conjecture 
lim k(x) = 1. Note that (13) implies k(x) > 1 for all large x. The conjecture that 
we have equality in (13) implies that if we definej(x) by the equation 

C(x) = x - exp 1og2 x(lo3 X + log4 X + j(x))}) 

thenj(x) tends to 0 slowly as x -- oo. 
We have also checked our conjecture (2) numerically. If we define k2(x) by the 

equation 

V(x) = x exp{-k2(x)1og x log3 x/log2 x}, 

then (2) is equivalent to the assertion lim k2(x) = 1. Of course (1) implies k2(x) > 

1/2 for all large x. (The values for @ (x) in the Table were computed from one of 
the print-outs associated with [7].) Say we now make an even stronger assertion 
than (2), namely that if j2(x) is defined so that 

VP(x) = x * exp-log x (log3 x + lo4 x + 2(x)) 

then limj2(x) = 0. In the Table we have presented values of j2(x) for selected 
values of x. 

TABLE 

x/1O9 C(x) ' (x) k(x) j(x) k2(x) 12(X) 

1 646 5597 1.8799 0.8723 1.5951 0.5565 
5 1184 11108 1.8722 0.8633 1.5974 0.5519 

10 1547 14884 1.8687 0.8593 1.5989 0.5508 
15 1782 17658 1.8686 0.8591 1.5998 0.5504 
20 1983 19865 1.8678 0.8582 1.6009 0.5506 
25 2163 21853 1.8668 0.8570 1.6013 0.5503 
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